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Elastic and thermal expansion anisotropy 
of oriented linear polyethylene 

C. P. BUCKLEY 
Department of Engineering Science, Oxford University, Oxford, UK 

A two-phase composite laminate model is proposed for representing biaxially oriented 
sheets of linear polyethylene. Thermoelastic analysis of the model yields predictions of 
the complete elastic and thermal expansion anisotropy. These predictions are compared 
with experimental measurements of elastic compliance and thermal expansivity obtained 
with the same oriented sheets. Using only one adjustable parameter (Poisson's ratio of 
non-crystalline linear polyethylene), extensive qualitative agreement is obtained between 
model predictions and experimental results. Discrepancies which are observed are 
attributed to the influence of the interfacial regions which exist between adjacent stacks of 
lamellar crystals in the real oriented sheets. 

1. Introduction 
When linear polyethylene (LPE) is oriented by 
drawing and then annealing at temperatures 
between 120 and 130~ the resulting micro- 
structure has a lamellar texture. Electron 
microscopy [1-3] and small-angle X-ray scat- 
tering [4-6] show the structure to consist of 
stacks of lamellar crystals, of thickness c. 300 A, 
separated by layers of non-crystalline polymer, 
of thickness c. 50 A. A characteristic lamellar 
texture also dominates the morphology of 
undrawn melt-crystallized LPE and the majority 
of other polymers of high crystallinity [7]. Such 
a texture strikingly resembles the lay-up of the 
phases in a two-phase composite laminated 
solid which, therefore, may be a useful analogue 
for the purpose of understanding, for example, 
thermoelastic behaviour of these polymers. 

Several authors have, in essence, proposed a 
composite laminate model for predicting the 
elastic properties of semicrystalline polymers of 
medium or high crystallinity. Maeda et al [8] 
suggested implicitly (model I of their paper) that 
the structural unit in such polymers be taken to 
consist of a two-phase composite laminate 
arrangement of crystalline and non-crystalline 
regions and calculated its compliance matrix. 
Halpin and Kardos [9] described a method for 
predicting the macroscopic elastic moduli of 
such polymers, representing the polymer by an 
amorphous matrix containing lamellar crys- 
talline inclusions. Owen and Ward [10] repre- 
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sented sheets of oriented branched polyethylene 
by a model of alternating ribbon-like layers of 
crystalline and non-crystalline polymer, for the 
purpose of predicting elastic anisotropy. 

The present work explores the ability of a 
composite laminate model to correctly predict 
elastic and thermal expansion anisotropy of 
oriented LPE. Advantage is taken of drawn and 
annealed sheets of LPE in which crystal a-, b- and 
c-axes and lamella normals nl have simple singlet 
or doublet preferred orientations. Each oriented 
sheet is modelled by a three-dimensional 
composite laminate solid. Simple thermoelastic 
analysis then predicts the complete anisotropy 
of both elastic compliance and thermal expan- 
sivity. The success of the model is judged by 
comparing these predictions with experimental 
results obtained with the real oriented sheet. 

This paper forms a sequel to previous work 
[11-13] in which mechanical coupling between 
crystalline and non-crystalline regions in oriented 
LPE was represented by simple linear models of 
the type proposed by Takayanagi et al [14]. The 
equations of the simple series and parallel 
models used before, are first approximations to 
those derived from the present model [15]. 
The complete composite laminate treatment, 
however, can decide which of the previously 
noted discrepancies between theory and experi- 
ment [13] arise from the neglect, inherent in the 
assumption of linear coupling, of the pre- 
dominantly lamellar microstructure. 

�9 1974 Chapman and HallLtd. 
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2. Experimental 
The oriented sheets of LPE studied here have 
been described in detail elsewhere [16]. They 
were prepared by drawing, at constant width, 
compression moulded plates of Rigidex 2 (BP 
Chemicals Ltd) which were subsequently an- 
nealed for I h at 127~ Crystallographic and 
lamella orientation with respect to axes, X, Y, 
Z, defined as in Fig. 1, were determined by 
wide-angle and small-angle X-ray diffraction 
respectively. Drawing x7 at room temperature 
gave double preferred orientation with a-axes 
in the Z X  plane at + 5 ~ to X, b axes parallel to 
Y, c-axes in the Z X  plane at + 5 ~ to Z and nl 
in the Z X p l a n e  at ___ 38 ~ to Z. Drawing x9 
in air at 120 ~ C, however, gave the single scheme 
of preferred orientation with a-axes parallel to 
X, b-axes parallel to Y and c-axes and nl parallel 
to Z. These two types of drawn sheet will here 
be designated "biaxially cold-drawn" LPE and 
"biaxially hot-drawn" LPE, respectively. They 
had crystal volume fractions Xv of 0.81 [121 and 
0.80 [13], respectively, as estimated from density 
(and, in the former case, gas solubility) measure- 
ments. 
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Figure 1 Definition of  directions X, 17, Z in a drawn sheet 
of LPE. 

From the oriented sheets rectangular speci- 
mens (0.1 cm • 0.3 cm x 3.5 cm) were cut with 
their long axes in the YZ plane at various angles 
0 ~ to Z. For each specimen the tensile creep 
compliance DoT (t) was measured over the range 
of temperature T from - 190 to - 60 ~ C using 
the procedure outlined previously [16]. Tensile 
strains were always less than 0.001 and all 
specimens always deformed as linear viscoelastic 
solids to within the sensitivity of measurement. 

Results will be presented here as isochronal 
values for a creep time, t, of 10 sec. 

Identical rectangular specimens were used for  
measuring linear thermal expansivity e in the 
YZ plane (e is defined as (lT -- lo)lo in terms of the 
specimen length lT at T~ and l 0 at 0~ 
Results were expressed as the linear thermal 
expansivities ey and ez measured parallel to Y 
and Z respectively. Measurements covered the 
temperature range - 1 9 0  to 0~ and were 
obtained following the method described pre- 
viously [13]. Linear thermal expansivity ex 
parallel to X was obtained from ey, ez and the 
volumetric thermal expansivity ev through the 
relation 

1 + e v =  (I + ex)(1  + ey ) (1  + ez) . (1) 

The method of  Sauer et al [17], based o n  
Archimedes' Principle, was used for deter- 
mining ev, a portion of the Oriented sheet being 
suspended in a bath of ethanol while the tem- 
perature steadily rose from c. - 120 to 0~ over 
a period of c. 40 h. 

Of these measurements Do T (10 sec) and DgoT 
(10 sec) for biaxially cold-drawn LPE [12] and 
ex, ey and ez for biaxially hot-drawn LPE [13] 
have already been presented. In this paper, the 
complete set of results Do T (10 sec), D45 ~" (10 sec) 
Dg0 T (10 sec), ex, ey and ez for both biaxially 
cold-drawn and biaxially hot-drawn LPE will 
be used for assessing the composite laminate 
model. 

3. Composite laminate model 
3.1. Description 
The model for representing a sheet of biaxially 
oriented LPE is shown in Fig. 2. It consists of 
two parallel stacks of parallel alternating 
lamellar layers of crystalline (C) and n o n -  
crystal l ine,  or "amorphous" (A), LPE. Each 
stack occupies half the sheet thickness: they are 
perfectly bonded in the Y Z  plane, in which they 
are mirror-images. The volume fractions of 
phases A and C are respectively 1 - Xv and 
Xv, measured for the real oriented sheet. The 
C/A/Crepeat distance parallel to Z takes its mean 
value in the real sheet, while in width the layers 
of a given stack extend across its entire breadth 
and thickness. The orientations of  lamella 
normals and crystal axes within one of the 
stacks are indicated in Fig. 2. Lamella normals 
ni lie in the Z X  plane at an angle s to Z, crystal 
a- and c-axes also lie in the Z X  plane, but at 
angles (90~ _ ~) and - ~ to Z respectively, while 
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Figure 2 Schematic diagram of the two-phase composite 
laminate model for a sheet of biaxially oriented LPE: 
Phase A is shown grey, phase C white. Crystallographic 
and lamella orientations are indicated for the nearer stack 
of lamellae: those of the other stack are mirror-images 
in the YZ plane. 

b-axes lie parallel to Y. Corresponding orienta- 
tions in the other stack are simply mirror-images 
in the Y Z  plane. The angles g? and ~ take their 
mean values in the real oriented sheet as 
measured by X-ray diffraction. A sheet of 
biaxially cold-drawn LPE is, therefore, represen- 
ted by a model in which f2 = 38 ~ ~ = 5 ~ and a 
sheet of biaxially hot-drawn LPE by a model in 
w h i c h O  = 0 ~ ,c~ = 0 ~ . 

In the analysis which follows, the two stacks 
are assumed to deform independently under the 
action of an applied stress or temperature change. 
For such a model this is true to a high degree of 
accuracy if the resulting overall strain in all 
directions in the plane of the interface is equal 
in the two stacks. Since occasions can arise when 
this condition is not fulfilled, a minor restriction 
must be placed on the application of the model 
described above (see Section 4.1). 

3.2. Analysis 
Consider the deformation of the model shown 
in Fig. 2 under the action of an applied stress 
system or change in temperature. The two stacks 
are assumed to deform independently (see above) 
and we therefore treat the deformation of a 
single stack alone. Within the stack define an 
orthogonal set of axes 1, 2, 3 with 2 parallel to 
Y and 3 parallel to nl as shown in Fig. 2. As- 
sume both phases A and C to be homogeneous, 
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anisotropic linear elastic continua with ortho- 
tropic symmetry, each phase having one axis of  
symmetry parallel to axis 2. 

For convenience, we represent the second rank 
tensors of  stress ~r~j, strain ci~ and thermal expan- 
sivity e~ by their corresponding 6-element 
column matrices ~, e and e respectively, using 
the usual [18] contracted notation with the 
engineering definition of strain for both ~ and e. 
Similarly we represent the fourth rank tensors of 
compliance S,~z and stiffness C~jk~ by their 
corresponding 6 x 6 matrices S and C, derived 
from the same contracted notation. As written 
above they refer to the entire stack. When 
referring to phase A or C these symbols, and 
their matrix elements, carry the additional sub- 
script a or c respectively. 

The overall deformation of the stack in 
response to an applied stress system ~ and tem- 
perature rise A T  is given by the matrix equation 

�9 = s ~  + e ( A T ) .  (2) 

Similarly, the corresponding thermoelastic rela- 
tions apply at every point in phase A 

, ~  = s ~  + e~ ( A T )  (3) 

and in phase C 

~e = S e r e  + ee ( A T ) .  (4) 

As referred to axes 1, 2, 3, e and S have the forms 

e2 /S~2 S~2 S~ 0 $25 0 
3 [0S'sS23S3~0 $350 I O  

0 0 $440 $46 
[ ; 5 J  [815 $25 $35 0 $55 

0 0 $460  Se .J  

while ea and ee take the same form as e and S~ 
and S e the same form as S. 

For  such a two-phase laminated solid to be in 
static equilibrium, the terms of ~a and ~e must 
[15] be related to those of  a through 

ffl = "Ua ~&l "q- VC~Cl 
0" 2 = Va(Ta2 + Vc(~c2 

~s = ~ = ~ ,3  (5) 
~4 = 5a4 = 5c4 
0"5 ~ ~a5 ~ ~e5 
0" 6 ~--- Va(Ya6 + Ve(~c6 

where V a and v e denote the volume fractions 
1 - gv and gv of phases A and C respectively 
and a bar placed above denotes the volume 
average value. Similarly, if phases A and C are 
perfectly bonded, the condition of compatibility 
of  displacement in each phase which must be 
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obeyed at all points in the interfaces between A 
and C requires [15] that E be related to Ea 
and e c through 

61 = ~ a l  = Ee l  

62 : ~ a 2  ~ ~ c 2  

63 = Va Ea3 -I- Vc Ec3  

64 ~-~ 7)a ~a4  + Ue ~e4 

6 5 = va ~a5 + Vc fie5 
66 = Ea6  = Ee6.  

(6) 

Of  Equations 5 and 6, all are exact except those 
giving 61, 62 and 68. The fractional error in each 
of those is of  the same order as the ratio thick- 
ness/width of the layers. Since the layer thick- 
ness is at most only c. 300 A but the width is of  
macroscopic sample size (of minimum dimension 
at least 0.05 cm), the complete set of Equations 
5 and 6 are true to a high degree of accuracy for 
the present model. 

Equations 3 and 4 apply at every point in 
phases A and C respectively and the phases are 
assumed homogeneous. These equations may, 
therefore, be rewritten in terms of volume average 
quantities 

~a = SaSa  + ea (2xT) (7) 

ic  = Sc6o  + eo (AT).  8) 

Equations 5 to 8 may then be readily solved for 
the terms of ~ for arbitrary a and A T  to yield, 
f rom Equation 2, explicit expressions for S and e 
in terms of the phase properties Sa, Sc, ea and ec 
and phase volume fractions v a and re. In the 
special case of c~ + ~ = 0 the terms of S are 
equal to those written out for model I of their 
paper by Maeda et al [8], apart from a few 
printing errors [Kawai - private communica= 
tion]. 

3.3. P h a s e  proper t ies  
In order to calculate S and e, numerical values 
must first be assigned to all terms of Sa, Se, ea 
and ee. 

Since phase A represents non-crystalline LPE 
it was assumed at this stage to be isotropic, with 
thermoelastic properties specified by a shear 
modulus Ga, Poisson's ratio v ~ and linear thermal 
expansivity ea. Constituent terms of Sa and ea 
were, therefore, assumed independent of s and 
given by 

1 
Sail = Sa~2 = Sa3z = ~2Ga (1 + Va) 

- -  1,, a 

Sal~ = Sa2z = Sa13 - 2Ga (1 + Va) 

1 
Sa44 = Sa55 = Sa6n = Ga 

Sa15 = Sa25 = Sa35 = Sa4~ = 0 

eal = ea2 = ea~ = ea 

e a  5 = O. 

O) 

For  a given temperature T, Ga was equated to 
the real part  of the complex shear modulus of  
amorphous LPE Ga 'T (0.67 Hz), estimated by 
extrapolation by Gray and McCrum [19]. The 
Poisson's ratio va is unknown: it was expected to 
lie between �89 and �89 f rom experience with other 
amorphous polymers [20]. The linear thermal 
expansivity, ea was equated to that recently 
estimated by extrapolation by Bucktey and 
McCrum [13]. 

The properties of  phase C were derived with 
the aid of  a subsidiary set of axes 1', 2', 3' 
defined with 1' parallel to a-axes, 2' parallel to 
b-axes and 3' parallel to c-axes (see Fig. 2). 
Numerical values of all elements of the com- 
pliance matrix S e' and stiffness matrix C e' 
(referred to axes 1', 2' 3') of the orthorhombic 
polyethylene crystal are not yet known with 
certainty. Experimental and theoretical values for 
certain elements of  the matrices were recently 
reviewed by Holliday and White [21]. The 
complete matrix N e' or C e' has so far been 
predicted, using differing models and numerical 
constants for the various inter and intramolecu- 
tar interactions within the crystal, by Odajima 
and Maeda [22], Anand [231, Wobser and 
Blasenbrey [24] and Shiro and Miyazawa [251. 

In the present work, the matrix C e' calculated 
by Odajima and Maeda [22] was used (from 
Set I of their paper). Using, instead, the results 
of Wobser and Blasenbrey [24] would not have 
led to different conclusions, while the results of 
Anand [23] and Shiro and Miyazawa [25] were 
found to be incompatible* with the present 
experimental results and were not considered 
further. 

Numerical values of the elements of  S e' were 
obtained by inverting the stiffness matrix C e' 
given in Set I of their paper by Odajima and 
Maeda [22] for T = - 1 9 6 ~  They were as- 

*Within the oriented sheets studied here b-axes had high preferential orientation parallel to 1I. Since the sheets contained 
a more compliant non-crystalline fraction in addition to pure crystalline LPE we expect the condition Se~( < Dgo to 
be satisfied. This was not the case for Se~( as calculated by Anand and by Shiro and Miyazawa. 
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sumed constant over the temperature range from 
- 1 9 6  t o  - 8 0 ~  

Thermal expansion of phase C with respect to 
axes 1', 2', 3' was given by: 

eel  t = ea, ec2' ---- eb, ee3 t ~ ec, ec5 p ---- 0 

where e~, e b and e ~ are the linear thermal expan- 
sivities of the LPE crystal in a, b and c directions. 
For these quantities, the X-ray measurements of 
Davis et al [26] were used* (from the 2.5 h 
specimen of their paper). 

The matrices Se and ee were obtained from 
Se' and ee' by reverting to the tensor form and 
rotating axes 1', 2', 3' to coincide with 1, 2, 3, 
i.e. through an angle (o~ + ~)  about axis 2'. 

In assigning the above properties to the 
phases, two important assumptions have been 
implied: 

1. both phases were assumed elastic, whereas 
at temperatures in the region of the y-relaxation 
(c. - 130~ for a creep time t = 10 sec) phase A 
and possibly phase C show viscoelastic behaviour 
[19]. We, therefore, expect the equations to be 
exact in the relaxed and unrelaxed regions of 
temperature, but only approximations near the 
centre of the relaxation; 

2. all strains were assumed infinitesimal, 
whereas for the range of temperatures considered, 
the values of e a, e ~ and e b reach the order of 1 
[13]. This difficulty could have been removed by 
choosing a reference temperature for e lower 
than 0~ Conclusions drawn from the present 
work would not, however, have been signifi- 
cantly altered. 

4. Comparison of model predictions 
with experimental results 

4.1. Ca l cu la t i on  of mode l  p red i c t i ons  

To facilitate comparison of the computed S and e 
with experiment their reference axes 1, 2, 3 were 
rotated by - ~ about axis 2, to coincide with a 
further set of axes 1", 2", 3" defined parallel to 
X, Y, Z (see Fig. 2). The resulting matrices S" 
and e" were computed for each oriented sheet 
(specified by its measured values of Xv, ~ and/2)  
over the range of temperature from - 196 to 
_ 80~ 

As noted above, there existed no independent 
measurement of va. Fortunately, however, the 
majority of terms in S" and e" were insensitive to 
va, the term most critically dependent being 
S j  when ~ = f2 = 0. In the first instance, there- 
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Figure 3 The terms of the compliance matrix S" predicted 
by the model for biaxially hot-drawn LPE plotted 
logarithmically versus temperature T. 

fore, a constant value for va of 0.460 was chosen, 
which gave the best overall fit between theoretical 
and experimental determinations of S~3" for 
biaxially hot-drawn LPE. The resulting terms 
Spq" of S" are plotted as functions of temperature 
T in Figs. 3 and 4 for biaxially hot-drawn and 
biaxially cold-drawn LPE, respectively. 

Consider Fig. 3 for biaxially hot-drawn LPE. 
In this case, ~=-(2=0 and, therefore, $15" = $25" 
= $3~' = $46" = 0. Of the remaining terms 
Svq", both their magnitudes and their relative 
increases at the y-relaxation are predicted to be 
highly anisotropic. In particular, a large y- 
relaxation is predicted in terms S j ,  Sa;' and 
$55" for which, from Equations 5 and 6, approxi- 
mately series coupling exists between the phases. 

Now consider Fig. 4a for biaxially cold-drawn 
LPE. The dominant effect of non-zero ~ and (2 is 
clearly the occurrence of relaxation in $1~", 
S S  and S d  in addition to $3~" and S~"  while 
relaxation in $55" is partially suppressed. The 
extra terms S~5', S~" ,  Sz~' and S d  arising in 
this case are shown in Fig. 4b. For the complete 
model comprising mirror-image stacks they are 
all identically zero, equal and opposite con- 
tributions being made by the two halves of the 
model. They simply correspond to equal and 
opposite rotations of nl on application of an 

*Strictly, this procedure ignores the effect of thermal stresses on the results of Davis et al: in practice the error 
involved is negligible. 
104 



ELASTIC AND THERMAL EXPANSION ANISOTROPY OF ORIENTED LINEAR POLYETHYLENE 

(~} 

- 1 0 1  [ 

,-, L-$13 

1 0  L ~  I 1 ] I I I [ 
--200 --180 -160 -140 - 1 2 0 - 1 0 0  - 8 0  

r (~  

{b} 
[ T �9 [ �9 - 1 l - ,  

L 

_ 1511 ) 

~ s~" s(~ 

]- -Sit i u ~_ 1 5  / 

0 --I0i 
7 L 1 0  
4 :  
"3 I 

m F 

- 2 0 0 - 1 8 0 - 1 6 0 - 1 4 0  - 1 2 0 - 1 0 0  - 8 0 .  ta 10 
r(oc) u 

Z 
Figure 4 The terms of the compliance matrix S ~ predicted 
by the model for biaxially cold-drawn LPE plotted 
logarithmically versus temperature T. 8 

applied stress era, cr 2 or ~r a or shear stress cq or 
cr 6. The occurrence of terms $2/', $35" and S d  
causes the model comprising two, bonded, 
mirror-image halves to be strictly* inapplicable 
in the presence of a shear stress c~ 5 or a6- 

4.2. Compar i son  with exper iment  
The present model predicts all seventeen terms 
of S" and e" in the general case of  arbitrary c~ and 

/2. Only the following however were available 
from experiment for comparison: 

S j =  Do 
$22" = Dgo 

$44" + 2S~s" = 4 D4a - (Do + D~o) 
e / '  = (10) 
e~ r = ey 

e3 tt = Cz. 
For those terms in which reasonable variations in 
va caused a greater than 5 % change, extreme 
possibilities va = 0.333 and va = 0.500 were 
evaluated in addition to va = 0.460, in order to 
indicate the dependence on va. The terms of S" 
are compared with experiment in Figs. 5 and 6, 
and the terms of e" in Figs. 7 and 8, for biaxially 
hot-drawn and cold-drawn LPE respectively. 

Comparing $33" in Figs. 5 and 6, the marked 
differences in compliance level [16] above the 
},-relaxation observed in Do for the two types of  
oriented LPE are apparently explained by the 
model. Fig. 5 shows the dominant rote played by 
va in determining Sa3" when c~ = / 2  = 0. Clearly, 
if V a were allowed to increase with increasing 

31/§ 2S// ~ I !! 

( . . . . . . . . . . . . . . . . .  1 I ( )  12 I I r [ I I J _ _ _  
- 2 0 0  - t o o  -160 -140  -120  - 1 0 0  - s o  

r P c )  

- - - - -  ~a = 0"333 

~)a = 0"460 

. . . .  ~ a  = 0"500 

Figure 5 Comparison of model predictions with experi- 
mental compliance measurements (0) for biaxially hot- 
drawn LPE. 

*The model may, however, be applied loosely in the presence of a5 or aG by first allowing the twin stacks to be un- 
bonded at their interface and, hence, able to deform independently, then taking for each term of �9 the average of those 
for the two independent stacks. 
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Figure 6 Comparison of model predictions with experi- 
mental compliance measurements (0) for biaxially cold- 
drawn LPE. 
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Figure 7 Comparison of model predictions with experi- 
mental thermal expansivity measurements (0) for 
biaxially hot-drawn LPE. 
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Figure 8 Comparison of model predictions with experi- 
mental thermal expansivity measurements (0) for biaxially 
cold-drawn LPE. 

temperature an even closer fit between theory 
and experiment could be obtained for $3~". 

The comparisons between theory and experi- 
S " show the same pattern for both ment for 22 

oriented sheets. In each case the small observed 
)'-relaxation is correctly predicted, although 
there are discrepancies in the precise compliance 
levels and relaxation magnitudes obtained from 
theory and experiment. 

Comparing the calculated quantities ($4~" + 
2 S j )  with experiment, their magnitudes are 
seen to be given approximately by the model. 
The observed )'-relaxation magnitude, however, 
is considerably smaller than that predicted, for 

( S  ,v both oriented sheets. Since the sum t ~ + 
2S "~ is dominated by $44" (always contributing 2 8  ) 

at least 96 %), we conclude that the ),-relaxation 
in $4~" is partially suppressed in the real oriented 
sheets. 

When the calculated terms of e" are compared 
with experiment (Figs. 7 and 8) the result is 
similar to that obtained when applying simple 
series (for ez) or parallel (for ex and ey) models 
[13]. Again the overall pattern of anisotropy is 
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correctly predicted but substantial discrepancies 
remain on the quantitative level. In the present 
case, however, these discrepancies carry greater 
significance, in view of the much closer corres- 
pondence between the present model and the 
polymer microstructure. In Fig. 8 is included the 
thermal shear es" which arises for biaxially cold- 
drawn LPE. For the complete model it is 
identically zero, since the mirror-image halves 
make equal and opposite contributions. In this 
case, es" simply corresponds to equal and 
opposite rotations of ni in the ZX plane when 
temperature is changed. 

5. Discussion 
The predictions of the model presented here are 
in qualitative accord with experiment, con- 
sidering that the only adjustable parameter is 
v a to which most terms are insensitive. There are 
however, discrepancies on a quantitative level. 
How may these be explained ? There are three 
most likely causes. 

1. Some or all of the phase properties Sa, Se, 
ea and ee, and indirectly Xv, may be in error. 

2. The real oriented sheet contains a distribu- 
tion of directions of ni and a-, b- and c-axes. 

3. The model shown in Fig. 2 is not truly 
applicable since, although the real oriented sheet 
comprises similar stacks of alternating lamellar 
layers, the stacks are of much smaller dimen- 
sions in X and Y directions than portrayed in the 
model. 

All of these possibilities certainly contribute 
in some degree to the discrepancies observed. 
The likely errors arising from items (1) and (2), 
however, cannot account for the most pro- 
nounced differences between model predictions 
and experiment. It appears that item (3) plays 
the dominant role. 

Consider the effects of replacing the model of 
Fig. 2 by a more realistic model composed of 
many stacks of lamellae, identical to the stacks 
whose properties were previously calculated but 
of reduced dimensions in X and Y directions. A 
tendency towards narrower stacks has three 
effects. Firstly, the expressions for q, e~ and E 6 in 
Equations 6 become progressively less accurate 
because of "edge-effects". Secondly, these 
"edge-effects" within amorphous and crystalline 
layers begin to cause measurable non-linear 
material behaviour. This problem is well known 
in the context of materials reinforced by lamina- 
tion [27-30]: it arises because of the severe shear 
stress concentration which occurs at the line 

junction between an edge and an interface in a 
composite laminated solid [27]. Thirdly, the 
precise mechanism of bonding and the nature of 
the interfacial region between adjacent stacks 
assume increasing importance. 

The available evidence [1, 2, 6] suggests that, 
although a real drawn and annealed sheet of 
LPE comprises stacks of lameltae which are 
much narrower than those of Fig. 2, their widths 
remain at least several times the lamella 
thickness. The contribution of "edge-effects" is, 
therefore, unlikely to be dominant, but cannot be 
ruled out in the absence of more definite micro- 
structural information. The most likely source of 
error lies in the interaction and nature of the 
interface between adjacent stacks. All the 
discrepancies between model predictions and 
experiment observed here could be readily 
explained by allowing (a) some mutual rein- 
forcement (owing to mismatch between A and 
C layers) of bonded neighbouring stacks, and (b) 
the existence of some non-crystalline polymer 
interposed between groups of bonded stacks. 

It may be significant that a simple model 
consisting only of uniform stacks of alternating 
crystalline and amorphous layers was also found 
by Goffin et al [31 ] to be inadequate for explain- 
ing anisotropy of the linear thermal expansivity 
of certain rolled and annealed sheets of branched 
polyethylene. These authors concluded that 
between the stacks of lamellae exists polymer 
without a regular lamellar texture. Their 
suggestion, similar to that of Maeda et al [32] 
for drawn and annealed LPE, was that after 
annealing there remains a remnant of the original 
as-rolled or as-drawn texture, giving a hetero- 
geneous microstructure of which the stacks of 
lamellar layers form only one part. Such a 
situation, if it exists in the present oriented sheets, 
could explain some but not all of the results 
reported here. 

6. Conclusions 
The present work has shown how, if an oriented 
sheet of LPE is assumed to consist entirely of a 
two-phase composite laminate structure, it may 
be represented by a simple three-dimensional 
model. Straightforward thermoelastic analysis 
of the model yields predictions of the complete 
elastic and thermal expansion anisotropy of the 
sheet. Comparisons of model predictions with 
experimental results show extensive qualitative 
agreement. The composite laminate model, 
therefore, appears to provide, at least for drawn 
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and  annea led  L P E ,  a m e a n s  o f  m a k i n g  exhaus t ive  
b u t  qua l i t a t ive  p red ic t ions  o f  elast ic  and  
the rmoe la s t i c  behav iour .  T h e  m o d e l  assumes  a 
m i c r o s t r u c t u r e  c o m p r i s i n g  on ly  wide  s tacks  o f  
a l t e rna t ing  l ame l l a r  layers  o f  crys ta l l ine  and  
non-c rys ta l l ine  po lymer .  Disc repanc ies  obse rved  
be tween  m o d e l  p red ic t ions  and  expe r imen ta l  
resul ts  suggest  tha t  the  in ter rac ia l  r eg ion  be tween  
ad jacen t  s tacks also inf luences  elast ic  a n d  t he rma l  
expans ion  an i so t ropy .  
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